Skip to main content

Abstract

This chapter considers synchronization problems for homogeneous linear continuous-time multi-agent systems (MAS). A multi-agent system is homogeneous when the dynamics of all agents are identical. For homogeneous systems, we will primarily consider state synchronization where the differences between the states of different agents converge to zero. We also address the case of formation where the differences between states of different agents converge to, a priori given, vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Autom. Control 52(8), 1380–1390 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bai, H., Arcak, M., Wen, J.: Cooperative Control Design: A Systematic, Passivity-Based Approach. Communications and Control Engineering. Springer, Berlin (2011)

    Google Scholar 

  3. Blondel, V., Gevers, M.: Simultaneous stabilizability of three linear systems is rationally undecidable. Math. Control Signals Syst. 6(2), 135–145 (1993)

    Article  MathSciNet  Google Scholar 

  4. Boyd, S.P., Doyle, J.C.: Comparison of peak and RMS gains for discrete-time systems. Syst. Control Lett. 9(1), 1–6 (1987)

    Article  MathSciNet  Google Scholar 

  5. Chopra, N., Spong, W.: Output synchronization of nonlinear systems with relative degree one. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.). Recent Advances in Learning And Control. Lecture Notes in Control and Information Sciences, vol. 371, pp. 51–64. Springer, London (2008)

    Google Scholar 

  6. Chopra, N., Spong, W.: Passivity-based control of multi-agent systems. In: Kawamura, S., Svinin, M. (eds.). Advances in Robot Control: From Everyday Physics to Human-Like Movements, pp. 107–134. Springer, Heidelberg (2008)

    Google Scholar 

  7. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State space solutions to standard H 2 and H control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)

    Article  Google Scholar 

  8. Gantmacher, F.R.: The Theory of Matrices. Chelsea, New York (1959)

    MATH  Google Scholar 

  9. Grip, H.F., Saberi, A., Stoorvogel, A.A.: Synchronization in networks of minimum-phase, non-introspective agents without exchange of controller states: homogeneous, heterogeneous, and nonlinear. Automatica 54, 246–255 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hatanaka, T., Chopra, N., Fujita, M., Spong, M.W.: Passivity-Based Control and Estimation in Networked Robotics. Springer, Heidelberg (2015)

    Book  Google Scholar 

  11. Lafferriere, G., Williams, A., Caughman, J., Veerman, J.J.P.: Decentralized control of vehicle formations. Syst. Control Lett. 54(9), 899–910 (2005)

    Article  MathSciNet  Google Scholar 

  12. Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multi-agent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circ. Syst.-I Regul. Pap. 57(1), 213–224 (2010)

    Article  Google Scholar 

  13. Lin, Z.: Low Gain Feedback. Lecture Notes in Control and Information Sciences. Springer, Berlin (1998)

    Google Scholar 

  14. Lin, Z., Saberi, A.: Low-and-high gain design technique for linear systems subject to input saturation – a direct method. Int. J. Robust Nonlinear Control 7(12), 1071–1101 (1997)

    Article  MathSciNet  Google Scholar 

  15. Liu, Z., Zhang, M., Saberi, A., Stoorvogel, A.A.: State synchronization of multi-agent systems via static or adaptive nonlinear dynamic protocols. Automatica 95, 316–327 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ma, C.Q., Zhang, J.F.: Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans. Autom. Control 55(5), 1263–1268 (2010)

    Article  MathSciNet  Google Scholar 

  17. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  18. Ren, W., Atkins, E.: Distributed multi-vehicle coordinate control via local information. Int. J. Robust Nonlinear Control 17(10–11), 1002–1033 (2007)

    Article  Google Scholar 

  19. Saberi, A., Sannuti, P.: Time-scale structure assignment in linear multivariable systems using high-gain feedback. Int. J. Control 49(6), 2191–2213 (1989)

    Article  MathSciNet  Google Scholar 

  20. Saberi, A., Chen, B.M., Sannuti, P.: Loop Transfer Recovery: Analysis and Design. Springer, Berlin (1993)

    Book  Google Scholar 

  21. Saberi, A., Stoorvogel, A.A., Sannuti, P.: Internal and External Stabilization of Linear Systems with Constraints. Birkhäuser, Boston (2012)

    Book  Google Scholar 

  22. Scardovi, L., Sepulchre, R.: Synchronization in networks of identical linear systems. Automatica 45(11), 2557–2562 (2009)

    Article  MathSciNet  Google Scholar 

  23. Schumacher, J.M.: The role of the dissipation matrix in singular optimal control. Syst. Contr. Lett. 2(5), 262–266 (1983)

    Article  MathSciNet  Google Scholar 

  24. Seo, J.H., Shim, H., Back, J.: Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach. Automatica 45(11), 2659–2664 (2009)

    Article  MathSciNet  Google Scholar 

  25. Stoorvogel, A.A.: The H Control Problem: A State Space Approach. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  26. Stoorvogel, A.A.: The H control problem with zeros on the boundary of the stability domain. Int. J. Control 63(6), 1029–1053 (1996)

    Article  MathSciNet  Google Scholar 

  27. Stoorvogel, A.A., Zhang, M., Saberi, A., Grip, H.F.: Synchronization in networks of weakly-non-minimum-phase, non-introspective agents without exchange of controller states. In: American Control Conference, Portland, pp. 3548–3552 (2014)

    Google Scholar 

  28. Stoorvogel, A.A., Saberi, A., Zhang, M.: Synchronization for heterogeneous networks of weakly-non-minimum-phase, non-introspective agents without exchange of controller states. In: American Control Conference, Boston, pp. 5187–5192 (2016)

    Google Scholar 

  29. Stoorvogel, A.A., Saberi, A., Zhang, M.: Solvability conditions and design for state synchronization of multi-agent systems. Automatica 84, 43–47 (2017)

    Article  MathSciNet  Google Scholar 

  30. Tuna, S.E.: LQR-based coupling gain for synchronization of linear systems. arXiv:0801.3390v1 (2008)

    Google Scholar 

  31. Tuna, S.E.: Conditions for synchronizability in arrays of coupled linear systems. IEEE Trans. Autom. Control 55(10), 2416–2420 (2009)

    Article  MathSciNet  Google Scholar 

  32. Wang, J., Cheng, D., Hu, X.: Consensus of multi-agent linear dynamic systems. Asian J. Control 10(2), 144–155 (2008)

    Article  MathSciNet  Google Scholar 

  33. Wieland, P., Kim, J.S., Scheu, H., Allgöwer, F.: On consensus in multi-agent systems with linear high-order agents. In: Proceedings of the 17th IFAC World Congress, Seoul, pp. 1541–1546 (2008)

    Google Scholar 

  34. Willems, J.C.: Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Autom. Control 16(6), 621–634 (1971)

    Article  MathSciNet  Google Scholar 

  35. Wonham, W.M.: Linear Multivariable Control: A Geometric Approach, 3rd edn. Springer, New York (1985)

    Book  Google Scholar 

  36. Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, Singapore (2007)

    Book  Google Scholar 

  37. Wu, C.W., Chua, L.O.: Application of graph theory to the synchronization in an array of coupled nonlinear oscillators. IEEE Trans. Circ. Syst.-I Fundam. Theory Appl. 42(8), 494–497 (1995)

    Article  Google Scholar 

  38. Wu, C.W., Chua, L.O.: Application of Kronecker products to the analysis of systems with uniform linear coupling. IEEE Trans. Circ. Syst.-I Fundam. Theory Appl. 42(10), 775–778 (1995)

    Article  Google Scholar 

  39. Xia, T., Scardovi, L.: Output-feedback synchronizability of linear time-invariant systems. Syst. Control Lett. 94, 152–158 (2016)

    Article  MathSciNet  Google Scholar 

  40. Xia, T., Scardovi, L.: Synchronization of linear time-invariant systems on rooted graphs. In: Proceedings 55th Conference on Decision and Control (CDC), Las Vegas, pp. 4376–4381 (2016)

    Google Scholar 

  41. Yang, T., Roy, S., Wan, Y., Saberi, A.: Constructing consensus controllers for networks with identical general linear agents. Int. J. Robust Nonlinear Control 21(11), 1237–1256 (2011)

    Article  MathSciNet  Google Scholar 

  42. Yang, T., Saberi, A., Stoorvogel, A.A., Grip, H.F.: Output synchronization for heterogeneous networks of introspective right-invertible agents. Int. J. Robust Nonlinear Control 24(13), 1821–1844 (2014)

    Article  MathSciNet  Google Scholar 

  43. Yao, J., Guan, Z.-H., Hill, D.J.: Passivity-based control and synchronization of general complex dynamical networks. Automatica 45(9), 2107–2113 (2009)

    Article  MathSciNet  Google Scholar 

  44. Zhang, M., Saberi, A., Grip, H.F., Stoorvogel, A.A.: “\(\mathcal {H}_{\infty }\) almost output synchronization for heterogeneous networks without exchange of controller states. IEEE Trans. Control Netw. Syst. 2(4), 348–357 (2015)

    Google Scholar 

  45. Zhao, J., Hill, D.J., Liu, T.: Passivity-based output synchronization of dynamical network with non-identical nodes. In: Proceedings of 49th Conference on Decision and Control (CDC), Atlanta, pp. 7351–7356 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saberi, A., Stoorvogel, A.A., Zhang, M., Sannuti, P. (2022). Synchronization of Continuous-Time Linear MAS. In: Synchronization of Multi-Agent Systems in the Presence of Disturbances and Delays. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-88148-1_2

Download citation

Publish with us

Policies and ethics